检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]淮阴工学院计算机工程学院,江苏淮安223003 [2]南京航空航天大学机电学院,江苏南京210016
出 处:《成都大学学报(自然科学版)》2011年第4期342-344,共3页Journal of Chengdu University(Natural Science Edition)
摘 要:在视频智能监控系统中,遗撒物体的检测是一个重要的环节.首先通过建立混合高斯模型实时更新视频序列的背景图像,然后利用背景差分实现对运动目标的检测,最后将检测出的运动物体的重心、面积及轮廓作为参数,用来判断一段时间连续视频序列中参数的不变性,从而检测出遗撒物体.实验结果表明,该方法能准确的检测出遗撒物体,具有很强的可靠性和鲁棒性.Detection of abandoning and scattering objects is an important link in video intelligent monitoring systems.Background image of updated real-time video sequence was established based on mixed Gaussian model.Then background subtraction algorithm was used to achieve the detection of moving targets.The center of gravity,area and contour as parameters which were obtained from the detection were used to determine the invariability of parameters in consecutive video sequence in a period of time and further to detect the abandoning and scattering objects.The experimental results show that this method can accurately detect abandoning and scattering objects,which has strong reliability and robustness.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117