检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东石油化工学院计算机与电子信息学院,广东茂名525000
出 处:《计算机工程与应用》2012年第3期185-188,共4页Computer Engineering and Applications
摘 要:增量学习的效果直接影响到KNN的效率和准确率。提出基于分类贡献有效值的增量KNN修剪模型(C2EV-KNNMODEL),将特征参数的分类贡献度与KNN增量学习结合起来,定义一种新的训练样本的贡献有效值,并根据此定义制定训练集模型的修剪策略。理论和实验表明,C2EV-KNNMODEL的适用性较强,能够使分类器的分类性能得到极大的提高。The effect of incremental learning impacts on the efficiency and the rate of K-Nearest Neighbor algorithm directly.An incremental KNN model based on contribution effective value(CEV-KNNMODEL)is proposed,the paper combines the classification contribution degree and KNN incremental learning,defines a new contribution effective value of the training sample,and formulates the training set pruning strategy according to this definition.The theory and experiment shows that the applicability of CEV-KNNMODEL is strong,and the performance of the classifier can be greatly improved.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117