检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院电子学研究所,北京100190 [2]中国科学院研究生院,北京100049
出 处:《计算机仿真》2012年第1期242-245,共4页Computer Simulation
摘 要:关于雷达图像优化,提高分辨率的问题,场景较为复杂的图像,固有噪声图像效果不够理想,对具有不同统计特性的像素点缺乏精确的区分。由于传统参数估计方法降噪效果不足,为解决上述问题,提出了一种基于纹理特征分类的参数估计方法。首先计算极化总功率图像的灰度共生矩阵,并提取纹理特征矢量,用K均值聚类的方法进行分类。然后根据分类结果,在滑动邻域窗内选取与中心像素同类别的像素用于参数估计。实验结果表明,改进的纹理分类的滤波方法具有更好的降噪效果,对于复杂场景的极化SAR图像表现了较大的优越性。Polarimetric Whitening Filtering is a classical method for polarimetric SAR noise reduction, but the parameter estimation of the covariance matrix has always been a difficulty. The noise reduction effects of traditional methods, like the sliding neighborhood window, the Prewitt operator edge detection, and the structure inspection, are not good enough as they can not make a subtle distinction between the pixels with different statistical properties. To solve this problem, a new parameter estimation method based on texture classification has been proposed in this paper. Texture features were extracted from the span image, which then was used to calculate the gray-level co-occurrence matrix. Image pixels were then classified by K-mean clustering method. Parameters were calculated from the pixels of the same class in the sliding neighborhood window. Experiments demonstrate the effectiveness of this method. It shows much more advantage in polarimetric SAR images with complex scenes.
分 类 号:TN958[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3