检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖北大学数学与计算机科学学院,武汉430062 [2]西安交通大学信息与系统科学研究所,西安710049 [3]西北大学数学系,西安710069
出 处:《应用概率统计》2011年第6期597-613,共17页Chinese Journal of Applied Probability and Statistics
基 金:supported by National 973 project(2007CB311002)NSFC key project(70501030)NSFC project(61070225)China Postdoctoral Science Foundation(20080440190,200902592)
摘 要:研究最小平方损失下的经验风险最小化算法是统计学习理论中非常重要研究内容之一.而以往研究经验风险最小化回归学习速率的几乎所有工作都是基于独立同分布输入假设的.然而,独立的输入样本是一个非常强的条件.因此,在本文,我们超出了独立输入样本这个经典框架来研究了基于β混合输入样本的经验风险最小化回归算法学习速率的界.我们证明了基于β混合输入样本的经验风险最小化回归算法是一致的,指出了本文所建立的结果同样适合输入样本是马氏链、隐马氏链的情形.The study of empirical risk minimization (ERM) algorithm associated with least squared loss is one of very important issues in statistical learning theory. The main results describing the learning rates of ERM regression are almost based on independent and identically distributed (i.i.d.) inputs. However, independence is a very restrictive concept. In this paper we go far beyond this classical framework by establishing the bound on the learning rates of ERM regression with geometrically β-mixing inputs. We prove that the ERM regression with geometrically β-mixing inputs is consistent and the main results obtained in this paper are also suited to a large class of Markov chains samples and hidden Markov models.
关 键 词:学习速率 经验风险最小化 β混合 最小平方损失.
分 类 号:O211.5[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249