机构地区:[1]State Key Laboratory of Cryosphere Sciences, Yulong Snow Mountain Glaciers and Environmental Obser-vation Station, Cold and Arid Regions Environmental and Engineering Research Institute, CAS [2]Graduate University of Chinese Academy of Sciences [3]Research School of Arid Environment and Climate Change, Lanzhou University [4]College of Geography and Environment Science, Northwest Normal University
出 处:《地理学报》2012年第1期71-82,共12页Acta Geographica Sinica
基 金:国家973计划(2009CB421403,2012CB955304)
摘 要:Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961-2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the an-nual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of -0.17 mm a?1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.Runoff in the three time scales (non-flooding season, flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai (Yellow River source region: YeSR), Zhimenda (Yangtze River source region: YaSR) and Changdu (Lancang River source region: LcSR) by hydrological modeling, trend detection and comparative analysis. Also, future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested. The results showed that the annual and non-flooding season runoff decreased significantly in the YeSR, which decreased the water discharge to the middle and downstream of the Yellow River, and intensified the water shortage in the Yellow River Basin, but the other two regions were not statistically significant in the last 48 years. Compared with the runoff in the baseline (1990s), the runoff in the YeSR will decrease in the following 30 years (2010-2039), especially in the non-flooding season. Thus the water shortage in the middle and downstream of the Yellow River Basin will be serious continuously. The runoff in the YaSR will increase, especially in the flooding season, thus the flood control situation will be severe. The runoff in the LcSR will also be greater than the current runoff, and the annual and flooding season runoff will not change significantly, while the rtmoff variation in the non-flooding season is uncertain. It will increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model. Furthermore, the most sensitive region to climate change is the YaSR, followed by the YeSR and LcSR.
分 类 号:P9[天文地球—自然地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...