基于EMD和SVR的混合智能预测模型及实证研究  被引量:3

Hybrid intelligent prediction method based on EMD and SVR and its application

在线阅读下载全文

作  者:王巍[1,2] 赵宏[1,2] 梁朝晖[1] 马涛[1,2] 

机构地区:[1]天津工业大学经济学院,天津300387 [2]天津工业大学现代纺织产业创新研究中心,天津300387

出  处:《计算机工程与应用》2012年第4期225-227,共3页Computer Engineering and Applications

基  金:国家自然科学基金(No.70971098);国家软科学研究计划项目(No.2011GXS2D015);天津市哲学社会科学规划项目(No.TJYY11-2-042)

摘  要:针对非平稳、非线性时间序列变化复杂、难以用单一智能方法进行有效预测的问题,提出一种新的基于经验模式分解和支持向量回归的混合智能预测模型。经验模式分解能将非平稳时间序列按其内在的时间特征尺度自适应地分解为多个基本模式分量,根据这些分量各自趋势变化的剧烈程度选择不同的核函数进行支持向量回归预测,对各预测分量进行加权组合,得到原始序列的准确预测值。实证研究表明对于非平稳、非线性时间序列的预测,不论是单步预测还是多步预测,该模型均能取得很好的预测效果。Due to the fluctuation and complexity of non-linear and non-stationary time series, it is difficult to use a single forecasting method to accurately describe the moving tendency. So a novel hybrid intelligent forecasting model based on Empirical Mode Decomposition (EMD) and Support Vector Regression (SVR) is proposed, where these Intrinsic Mode Functions (IMF) are adaptively extracted via EMD from a non-stationary time series according to the intrinsic characteristic time scales. Tendencies of these IMF are forecast- ed with SVR respectively, in which the kernel functions are appropriately chosen with these different fluctuations of IMF. These fore- casting results of IMF are combined to output the forecasting result of the original time series. The proposed model is applied to the ten- dency forecasting of non-linear and non-stationary time series, and the results show that the forecasting performance of the hybrid mod- el outperforms SVR with the single-step ahead forecasting or the multi-step ahead forecasting.

关 键 词:时间序列 经验模式分解 支持向量回归 预测 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] F830[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象