检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:PENG Li TAN Bo WANG BaoWei
出 处:《Science China Mathematics》2012年第1期131-140,共10页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos.10631040,10901066)
摘 要:Let T : X → X be a transformation. For any x C [0, 1) and r 〉 O, the recurrence time Tr(x) of x under T in its r-neighborhood is defined as Tr(X) = inf{k ≥ 1: d(Tk(x),x) 〈 r}.For 0 ≤ α ≤ β ∞ co, let E(α,β) be the set of points with prescribed recurrence time as follows E(α,β)={x∈X:lim inf r→0 logTr(x)/-logr=α,lim sup r→0 logTr(x)/-logr=β}.In this note, we consider the Gauss transformation T on [0, 1), and determine the size of E(α,β)by showing that dimH E(α,β) = 1 no matter what a and/~ are. This can be compared with Feng and Wu's result [Nonlinearity, 14 (2001), 81-85] on the symbolic space.Let T:X → X be a transformation.For any x ∈[0,1) and r > 0,the recurrence time τr(x) of x under T in its r-neighborhood is defined as τr(x)=inf k 1:d (Tk(x),x) < r.For 0 αβ∞,let E(α,β) be the set of points with prescribed recurrence time as follows E (α,β)=x ∈ X:lim r→0 inf[log τr(x)/-log r]=α,lim r→0 sup[log τr(x)/-log r]=β.In this note,we consider the Gauss transformation T on [0,1),and determine the size of E (α,β) by showing that dim H E (α,β)=1 no matter what α and β are.This can be compared with Feng and Wu's result [Nonlinearity,14 (2001),81-85] on the symbolic space.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.103.40