Quantitative Poincar recurrence in continued fraction dynamical system  被引量:3

Quantitative Poincar recurrence in continued fraction dynamical system

在线阅读下载全文

作  者:PENG Li TAN Bo WANG BaoWei 

机构地区:[1]School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China

出  处:《Science China Mathematics》2012年第1期131-140,共10页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.10631040,10901066)

摘  要:Let T : X → X be a transformation. For any x C [0, 1) and r 〉 O, the recurrence time Tr(x) of x under T in its r-neighborhood is defined as Tr(X) = inf{k ≥ 1: d(Tk(x),x) 〈 r}.For 0 ≤ α ≤ β ∞ co, let E(α,β) be the set of points with prescribed recurrence time as follows E(α,β)={x∈X:lim inf r→0 logTr(x)/-logr=α,lim sup r→0 logTr(x)/-logr=β}.In this note, we consider the Gauss transformation T on [0, 1), and determine the size of E(α,β)by showing that dimH E(α,β) = 1 no matter what a and/~ are. This can be compared with Feng and Wu's result [Nonlinearity, 14 (2001), 81-85] on the symbolic space.Let T:X → X be a transformation.For any x ∈[0,1) and r > 0,the recurrence time τr(x) of x under T in its r-neighborhood is defined as τr(x)=inf k 1:d (Tk(x),x) < r.For 0 αβ∞,let E(α,β) be the set of points with prescribed recurrence time as follows E (α,β)=x ∈ X:lim r→0 inf[log τr(x)/-log r]=α,lim r→0 sup[log τr(x)/-log r]=β.In this note,we consider the Gauss transformation T on [0,1),and determine the size of E (α,β) by showing that dim H E (α,β)=1 no matter what α and β are.This can be compared with Feng and Wu's result [Nonlinearity,14 (2001),81-85] on the symbolic space.

关 键 词:RECURRENCE continued fraction Hausdorff dimension 

分 类 号:O175.1[理学—数学] S858.291[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象