检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子科技大学学报》2012年第1期43-47,共5页Journal of University of Electronic Science and Technology of China
基 金:Supported by the National Natural Science Foundation of China(60927002);111 Project(B07046);the Fundamental Research Funds for the Central Universities(103.1.2 E022050205)~~
摘 要:首次将模糊离散粒子群算法应用到稀疏阵列天线阵元位置优化上,以得到低的副瓣电平。与遗传算法等进化算法相比,模糊离散粒子群算法有参数少、易于执行的优点。为了尽量避免算法陷入局部最优,在优化中引入了混沌过程;同时用罚函数方法进行了主瓣约束。对于线性阵列的仿真结果表明,该方法能很好地处理离散问题。Aiming to obtain a low sidelobe of an array,fuzzy discrete particle swarm optimization(FDPSO) algorithm is firstly applied in the optimization of the element positions of thinned antenna arrays.Compared with some evolutionary algorithms such as genetic algorithm,the FDPSO has the advantages of less parameters and easier to be implemented.In order to avoid the algorithm being trapped into local optimum,a chaotic dynamic procedure is introduced in the optimization.A penalty approach is used in the constraint of the width of mainlobe.Simulation results of a linear array show that the algorithm can handle discrete problem properly.
分 类 号:TN011[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173