检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北石油大学,大庆163318
出 处:《系统仿真学报》2012年第2期482-487,492,共7页Journal of System Simulation
基 金:黑龙江省教育厅科学技术研究项目(12511014)
摘 要:提出了一种动态改变学习因子的粒子群算法,用以保证在粒子群优化算法的初始阶段,使粒子在进化初期仔细地在自身的邻域内搜索,防止粒子快速向局部最优解汇聚而错过自身邻域内可能存在的全局最优解,而在进化后期,使粒子快速、准确地收敛于全局最优解,提高算法收敛速度和精度。利用改进后的粒子群算法优化神经网络的权值和阈值,并把优化后的神经网络应用到抽油机故障检测中,结果表明用改进后粒子群算法优化的神经网络对抽油机进行故障诊断较传统BP算法更具准确性与快速性。A new particle swarm optimization(VCPSO) based on unifying the study factor was proposed,to ensure the particles careful search in the neighborhood of its own in the earlier stage,prevent the particles fast convergence to a local optimal solution for having missed theirs own neighborhood that may exist in the global optimal solution.Particles were rapidly and accurately converged to the global optimal solution and the algorithm convergence rapidity and accuracy in the later stage was improved.The connecting weights,thresholds and structure of the neural network were optimized by the new particle swarm optimizers.The new neural network was used in pumping unit fault intelligent diagnosis system.The diagnostic results between the new VCPSO and BP algorithm were compared.The conclusion is that the network based on VCPSO has better training performance,faster convergence rate and higher accuracy.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166