基于PBIL与网络最大流的组炉算法  被引量:3

PBIL and Maximum-Flow Based Algorithm of Charge Design Problem

在线阅读下载全文

作  者:朱俊[1] 贾树晋[2] 杜斌[1,3] 刘士新[1] 

机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819 [2]上海交通大学系统控制与信息处理教育部重点实验室,上海200240 [3]宝钢研究院自动化所,上海201900

出  处:《东北大学学报(自然科学版)》2012年第1期52-55,共4页Journal of Northeastern University(Natural Science)

基  金:国家自然科学基金资助项目(71021061)

摘  要:针对炼钢生产组炉计划编制问题,建立了相应的数学模型,并提出了基于PBIL与网络最大流的求解算法.该算法首先利用启发式规则获取炉次上界,并以此为基础,设计0-1染色体编码的PBIL算法,每个染色体代表一个炉次选择方案,并使用网络最大流理论求解染色体的具体组炉策略,给出染色体适应值,迭代后得到合同与炉次的最优匹配方案.经实际生产数据测试,利用该算法可以在较短的时间内给出较优的组炉方案,为计划员提供足够的决策支持.A mathematical model and an optimization algorithm, which is based on PBIL (population-based incremental learning) and network maximum flow, were proposed for the charge design problem of steel-making. The algorithm first finds an upper bound of the number of charges, which serves as the baseline for designing PBIL with 0- 1 chromosome encoding, through a heuristic rule. Each chromosome represents a selection scheme of charges, and the network maximum flow theory is used to calculate the fitness value for chromosome. The optimal order-furnace matching strategy could be obtained after several iterations. Simulations on real production data indicated that the proposed algorithm can obtain an optimized matching solution within reasonable time, and can provide enough decision support for planners.

关 键 词:炼钢 组炉 计划编制 PBIL算法 网络最大流 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象