检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学航空宇航学院,南京210016 [2]金陵科技学院,南京211169 [3]山东建筑大学机电学院,济南250101
出 处:《声学技术》2011年第6期469-473,共5页Technical Acoustics
基 金:863国家高技术研究发展计划(2008AA12A205);南京航空航天大学专项科研项目资助(NS2010006)
摘 要:基于重构核思想,应用无网格配点法构造近似函数,并利用最小二乘方法的原理解决边界问题,离散控制微分方程,建立求解的代数方程。并将此方法应用于封闭声腔响应的求解,即对亥姆霍兹方程进行离散,建立其最小二乘无网格配点格式。该方法的系数矩阵是对称正定的,因而保证了解的稳定性。通过数值算例分别验证了配点均匀分布与随机分布时此方法的精确性以及稳定性。与有限元方法相比较,此方法不需要进行网格划分,节点可随机分布,且随着节点数目的增加,其精度越来越高,并具有良好的收敛性。In this paper,approximate functions are constructed based on the principle of reproducing kernel particle method,and the least-square collocation method is used to solve boundary problems.The system coefficient matrix generated by this method is symmetric,which make sure of the results stable.A least-square collocation formulation based on kernel reproducing particle method is established for solving acoustic response in closed cavity.Helmholtz equation is then discretized.Several numerical examples of points distributed uniformly or randomly are analyzed.Compared with FEM,this method dose not need any initial mesh generation and mesh regeneration.Examples show whenever the points are distributed uniformly or randomly the results have good accuracy and convergence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7