检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学计算机科学与技术学院,浙江杭州310027
出 处:《浙江大学学报(工学版)》2011年第12期2240-2246,共7页Journal of Zhejiang University:Engineering Science
基 金:国家"973"重点基础研究发展规划资助项目(2009CB320804);省部产学研资助项目(2011B090400546)
摘 要:为了克服目标物外观变化给跟踪造成的困难,提出一种基于加权增量子空间学习的目标跟踪算法.该算法构造了一个可在线更新的子空间作为视频中目标物的外观模型,根据概率转移模型预测得到一组图像样本作为目标物在当前帧中可能出现的图像区域;然后将图像样本投影到该低维子空间中估计每个图像样本为目标图像区域的似然度,以具有最高似然度的样本作为目标在当前帧中的图像区域,通过加权增量的方式调整子空间.实验结果表明:相比基于其他增量子空间学习的跟踪算法,该算法能够稳定、准确地对运动目标进行跟踪.An object tracking method based on weighted incremental subspace learning was proposed to overcome the difficulty in object tracking resulting from variations in appearance. The method constructs a subspace updated online to depict the appearance of the object in the video. A set of image patches are predicted based on probabilistic transformation model as candidate image regions of the object in the current frame, then these image patches are projected onto the low-dimensional subspace, and the likelihood of each image patch as the image region of the object is evaluated. The image patch with maximal likelihood is regarded as the object image region. Finally, the subspace is updated incrementally with temporal weights. Experimental results show that the method accomplishes object tracking more steadily and accurately, compared with other incremental subspace learning based object tracking methods.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3