检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王星博[1] 李本威[1] 李泽辉[2] 于光辉[1]
机构地区:[1]海军航空工程学院飞行器工程系,山东烟台264001 [2]91006部队,合肥231600
出 处:《海军航空工程学院学报》2012年第1期89-93,98,共6页Journal of Naval Aeronautical and Astronautical University
摘 要:针对标准粒子群算法进行多极点函数优化时易导致早熟收敛及陷人局部最优的问题,把生物趋化原理引入到粒子群优化算法中,改变传统粒子群优化算法只存在吸引操作而没有排斥操作的单向性,提出一种保持种群多样性的改进算法,并对其关键参数的选择进行了研究。仿真实验结果表明,与传统粒子群优化算法相比,基于生物趋化的粒子群算法对于处理复杂的多峰函数或优化问题,可显著提高算法的全局寻优性能。Aiming at the resulting in premature convergence and plunging into local optimum for standard particle swarm optimization in solving multiple-order pole functions, chemotaxis principle in biology was introduced into particle swarm optimization algorithm to change the single direction characteristic of the traditional algorithm which only had attracting operation instead of repulsing operation. The ameliorated algorithm to maintain population diversity was proposed and the selection of key parameters were studied. Simulation experiment results indicated that the improved particle swarm optimization based on chemotaxis principle could prominently improve the global optimization ability of the algorithm when dealing with complicated multimodal functions or other problems.
关 键 词:粒子群优化 生物趋化 吸引操作 排斥操作 种群多样性 标准测试函数
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222