一种基于生物趋化的改进粒子群算法  被引量:2

An Improved Particle Swarm Optimizing Algorithm Based on Chemotaxis Principle

在线阅读下载全文

作  者:王星博[1] 李本威[1] 李泽辉[2] 于光辉[1] 

机构地区:[1]海军航空工程学院飞行器工程系,山东烟台264001 [2]91006部队,合肥231600

出  处:《海军航空工程学院学报》2012年第1期89-93,98,共6页Journal of Naval Aeronautical and Astronautical University

摘  要:针对标准粒子群算法进行多极点函数优化时易导致早熟收敛及陷人局部最优的问题,把生物趋化原理引入到粒子群优化算法中,改变传统粒子群优化算法只存在吸引操作而没有排斥操作的单向性,提出一种保持种群多样性的改进算法,并对其关键参数的选择进行了研究。仿真实验结果表明,与传统粒子群优化算法相比,基于生物趋化的粒子群算法对于处理复杂的多峰函数或优化问题,可显著提高算法的全局寻优性能。Aiming at the resulting in premature convergence and plunging into local optimum for standard particle swarm optimization in solving multiple-order pole functions, chemotaxis principle in biology was introduced into particle swarm optimization algorithm to change the single direction characteristic of the traditional algorithm which only had attracting operation instead of repulsing operation. The ameliorated algorithm to maintain population diversity was proposed and the selection of key parameters were studied. Simulation experiment results indicated that the improved particle swarm optimization based on chemotaxis principle could prominently improve the global optimization ability of the algorithm when dealing with complicated multimodal functions or other problems.

关 键 词:粒子群优化 生物趋化 吸引操作 排斥操作 种群多样性 标准测试函数 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象