检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电光与控制》2012年第2期87-91,共5页Electronics Optics & Control
摘 要:为了提高支持向量机的泛化能力,研究了Bagging集成学习方法对于支持向量机的提升作用,试验结果表明提升作用不明显。通过模拟数据扰动的方法,在标准数据集上通过试验定量比较了支持向量机和神经网络的稳定性,结果表明支持向量机相对于神经网络来说是一种稳定的分类器。在此基础上,提出了双重扰动法,即通过子空间法扰动数据特征,通过Bagging算法扰动数据分布,来达到提高基分类器之间差异性的目的,在标准数据集和故障诊断数据上进行了试验,试验结果表明,双重扰动法较好地提升了支持向量机的正确识别率。In order to enhance the generalization ability of Support Vector Machine(SVM),Bagging ensemble learning algorithm was studied.The experimental results of Bagging SVM in the standard data set showed that the Bagging method couldn't enhance the generalization ability of SVM markedly.In order to find reason of this,the stability of SVM and neural network was studied.The results showed that SVM is a relative stable classifier in comparison with neural network.Then,a double disturbance algorithm was proposed,in which the subspace method was used for data characteristics disturbance,and Bagging method for data distribution disturbance.Experiments were made by using double disturbance algorithm for the standard data sets and fault diagnosis data set,and the results showed that the recognition rate of SVM is obviously enhanced by this method.
分 类 号:V271.4[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222