检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《聊城大学学报(自然科学版)》2011年第4期28-33,80,共7页Journal of Liaocheng University:Natural Science Edition
基 金:山东省自然科学基金资助项目(ZR2010FL011)
摘 要:谱回归(SR)算法是一种正则化的降维方法,通过学习获得回归框架下的嵌入函数,使其避免了稠密矩阵分解的问题.但是在谱回归的构图中,更加关注于类内信息,而忽视了很重要的类间信息.为此,提出一种新的降维算法——判别正则化谱回归(DRSR).它将数据集的判别信息和流行结构同时嵌入到正则项的构造中,期望使输出结果即保持同类样本间的内在邻近关系,同时又能将不同类的近邻样本尽可能分得开.最后,分析了这种算法的优缺点,并在两个常用的数据集(Yale和wine)上验证了算法的可行性及有效性.Spectral Regression is a regularized method for dimensionality reduction.It casts the problem of learning an embedding function into a regression framework,which avoids eigen-decomposition of dense matrices.However,the intra-class information attract more attentions in constructive graph of SR in stead of the critical inter-class information.To address this issue,a novel algorithms for dimensionality reduction are presented,called Discriminatively Regularized Spectral Regression(DRSR) method.DRSR embeds the discriminative information as well as the manifold structures into the regularization term,which aims to retain the intraclass compactness and connects each data point with its neighboring points of the same class,while characterizes the interclass separability and connects the marginal points.The feasibility and effectiveness of the proposed method is then verified on two popular databases(Yale and wine) with promising results.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117