检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学数理学院,重庆400030
出 处:《计算机工程与应用》2012年第6期46-48,共3页Computer Engineering and Applications
摘 要:利用粒子群算法的快速收敛性和差分进化算法的搜索精度较高等特点,提出了一种新的混合优化算法。该算法在粒子群算法的中后期,在已经寻找到的最优位置周围,随机生成一定数量的粒子进行差分进化算法,可以减少一定的运算量和在较优的区域进行寻找最优解。通过几个Benchmark函数的测试证明,新的混合算法具有搜索精度更高和更快收敛的优点。To take advantage of different algorithms, a hybrid optimization algorithm is proposed based on the combination of Differential Evolution (DE) and Particle Swarm Optimization (PSO). At the last period of the hybrid optimization, a new population will be produced around the best position found by the PSO, and DE is carried out with this population. The hybrid optimization can deduce the computa- tional work to some degree and has more chance to find the best solution in a better region. Numerical tests on some benchmark functions are conducted for the algorithm evaluation. The results show the higher precision and more probability to find the best solution.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3