HYDROPHILIC NANOFILTRATION MEMBRANES WITH SELF-POLYMERIZED AND STRONGLY-ADHERED POLYDOPAMINE AS SEPARATING LAYER  被引量:12

HYDROPHILIC NANOFILTRATION MEMBRANES WITH SELF-POLYMERIZED AND STRONGLY-ADHERED POLYDOPAMINE AS SEPARATING LAYER

在线阅读下载全文

作  者:朱利平 

机构地区:[1]MOE Key Laboratory of Macromolecule Synthesis and Functionalization,Department of Polymer Science and Engineering, Zhejiang University,Hangzhou 310027,China

出  处:《Chinese Journal of Polymer Science》2012年第2期152-163,共12页高分子科学(英文版)

基  金:financially supported by the National Natural Science Foundation of China(No.50803054);Zhejiang Provincial Nature Science Foundation of China(No.Y4100204)

摘  要:Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions, a novel hydrophilic nanofiltration (NF) membrane was fabricated by simply dipping polysulfone (PSf) ultrafiltration (UF) substrate in dopamine solution. The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane. The surface hydrophilicity of membranes was evaluated through water contact angle measurements. It was found that membrane hydrophilicity was significantly improved after coating a polydopamine (pDA) layer, especially after double coating. The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue, congo red and methyl orange with a pure water flux of 83.7 L/(mE.h) under 0.6 MPa. The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process. The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment. It was demonstrated that the salts rejections followed the sequence: NaC1 〈 NaaSO4 〈 MgSO4 〈 MgC12 〈 CaCl2, and the rejection to CaC12 reached 68.7%. Moreover, the composite NF membranes showed a good stability in water-phase filtration process.Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions, a novel hydrophilic nanofiltration (NF) membrane was fabricated by simply dipping polysulfone (PSf) ultrafiltration (UF) substrate in dopamine solution. The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane. The surface hydrophilicity of membranes was evaluated through water contact angle measurements. It was found that membrane hydrophilicity was significantly improved after coating a polydopamine (pDA) layer, especially after double coating. The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue, congo red and methyl orange with a pure water flux of 83.7 L/(mE.h) under 0.6 MPa. The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process. The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment. It was demonstrated that the salts rejections followed the sequence: NaC1 〈 NaaSO4 〈 MgSO4 〈 MgC12 〈 CaCl2, and the rejection to CaC12 reached 68.7%. Moreover, the composite NF membranes showed a good stability in water-phase filtration process.

关 键 词:DOPAMINE SELF-POLYMERIZATION Strong adhesion Nanofiltration membrane. 

分 类 号:O631.3[理学—高分子化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象