新的基于特征关系表述的步态识别算法  

New feature description based on feature relationships for gait recognition

在线阅读下载全文

作  者:项俊[1] 笪邦友[1] 梁娟[1] 侯建华[1] 

机构地区:[1]中南民族大学电子信息工程学院,武汉430074

出  处:《计算机应用》2012年第3期885-888,892,共5页journal of Computer Applications

基  金:武汉市科技供需对接计划项目(201051824575);湖北省自然科学基金资助项目(2010CDB02001)

摘  要:为了快速有效地进行步态识别,利用特征关系非平稳分布的统计特性,提出了一种新的基于特征关系表述的步态识别算法。首先,将剪影轮廓相邻像素点间8邻域相对方向标号作为特征关系属性一,将轮廓边界点与中心点间的距离作为特征关系属性二,经直方图归一化处理,得到两种关系属性的联合概率;其次,结合主成分分析(PCA)降维的方法,提取特征主向量;最后,采用最近邻分类器进行识别分类。实验证明,该算法在CASIA步态数据库上,最高达到了90%以上的识别率,而且与传统的特征关系表述步态识别算法相比,关系属性联合概率矩阵维数由900维下降到240维,大大降低了算法的计算代价。In order to carry on the gait recognition fast and efficiently,a new feature relationship based feature representation was proposed in this paper,which utilized nonstationarity in the distribution of feature relationships.Firstly,relative direction between two adjacent edge pixels in 8-neighborhood region was labeled as one of the attributes characterizing relationship,and distance from edge pixel to shape centroid point as the other attribute.Joint probability function of the two attributes was estimated by normalized histogram of observed values.Secondly,Principal Component Analysis(PCA) was adopted for feature reduction.Finally,the nearest-neighbor classifier was adopted for classification.The experimental result demonstrates that the proposed method was used to CASIA gait database,and got the best recognition rate of more than 90%.Feature dimension of the attributes joint probability matrix is reduced from 900 to 240 with relatively lower computational cost.

关 键 词:步态识别 特征关系 特征表述 主成分分析 最近邻分类器 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TP301.6[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象