检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院遥感应用研究所,北京100101 [2]中国科学院研究生院,北京100049 [3]中国科学院生态环境研究中心,北京100085
出 处:《中国科学:地球科学》2012年第2期246-255,共10页Scientia Sinica(Terrae)
基 金:中国科学院西部行动计划(编号:KZCX2-XB2-09);国家重点基础研究发展计划(编号:2007CB714407);国家自然科学基金(批准号:40801070)资助
摘 要:定量遥感反演由于观测信息量不足,往往是"病态"反演,而且在区域研究中格外突出.本文以MODIS250m估算区域LAI作为典型案例,提出了基于空间知识的多尺度多阶段目标决策反演方法,研究先验知识的引入及其合理使用,试图为解决区域遥感"病态"反演提供一个合理的解决方案.首先,利用不同分辨率的MODIS影像(1km,500m和250m)提取地表的多尺度信息,并将其融入到MODIS较低分辨率数据的多阶段目标决策反演上,通过降低空间异质性影响,提高了粗尺度数据反演参数的准确性;然后,粗尺度反演结果作为细尺度反演的先验知识,再次参与反演,通过多次反演,先验知识实现多次更新.从MODIS_1km到MODIS_250m,在每一个尺度的反演中,用最敏感的数据反演最不确定的参数,实现了有限的数据在模型空间中的合理分配.基于空间知识的多尺度多阶段目标决策反演方法,融合了地面实测数据、空间知识、多尺度遥感观测数据,反演是一个逐步细化的过程,待反演参数的初始期望更加合理、不确定性范围有效缩小,反演目标更加明确.最后利用MODIS数据反演黑河中游农作物区LAI对该方法进行了验证,结果表明这种反演方法较以往传统的区域性参数获取方法更为准确、可靠.
分 类 号:P627[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.183.215