Anisotropic nonconforming Crouzeix-Raviart type FEM forsecond-order elliptic problems  被引量:1

Anisotropic nonconforming Crouzeix-Raviart type FEM forsecond-order elliptic problems

在线阅读下载全文

作  者:石东洋 许超 

机构地区:[1]Department of Mathematics,Zhengzhou University [2]Department of Mathematics and Physics,Luoyang Institute of Science and Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2012年第2期243-252,共10页应用数学和力学(英文版)

基  金:supported by the National Natural Science Foundation of China (No. 10971203)

摘  要:The nonconforming Crouzeix-Raviart type linear triangular finite element approximate to second-order elliptic problems is studied on anisotropic general triangular meshes in 2D satisfying the maximal angle condition and the coordinate system condition. The optimal-order error estimates of the broken energy norm and L2-norm are obtained.The nonconforming Crouzeix-Raviart type linear triangular finite element approximate to second-order elliptic problems is studied on anisotropic general triangular meshes in 2D satisfying the maximal angle condition and the coordinate system condition. The optimal-order error estimates of the broken energy norm and L2-norm are obtained.

关 键 词:nonconforming finite element elliptic problem anisotropic mesh 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象