Maximal Dimension of Invariant Subspaces to Systems of Nonlinear Evolution Equations  被引量:13

Maximal Dimension of Invariant Subspaces to Systems of Nonlinear Evolution Equations

在线阅读下载全文

作  者:Shoufeng SHEN Changzheng QU Yongyang JIN Lina JI 

机构地区:[1]Department of Applied Mathematics,Zhejiang University of Technology,Hangzhou 310023,China [2]Department of Mathematics,Ningbo University,Ningbo 315211,Zhejiang,China [3]Department of Information and Computational Science,Henan Agricultural University,Zhengzhou 450002,China

出  处:《Chinese Annals of Mathematics,Series B》2012年第2期161-178,共18页数学年刊(B辑英文版)

基  金:Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No.10925104);the National Natural Science Foundation of China (No.11001240);the Doctoral Program Foundation of the Ministry of Education of China (No.20106101110008);the Zhejiang Provincial Natural Science Foundation of China (Nos.Y6090359,Y6090383)

摘  要:In this paper, the dimension of invariant subspaces admitted by nonlinear sys- tems is estimated under certain conditions. It is shown that if the two-component nonlinear vector differential operator F = (F1, F2) with orders {k1, k2} (k1≥ k2) preserves the invariant subspace Wn1^1× Wn2^2 (n1 ≥ n2), then n1 - n2 ≤ k2, n1 ≤2(k1 + k2) + 1, where Wnq^q is the space generated by solutions of a linear ordinary differential equation of order nq (q = 1, 2). Several examples including the (1+1)-dimensional diffusion system and Ito's type, Drinfel'd-Sokolov-Wilson's type and Whitham-Broer-Kaup's type equations are presented to illustrate the result. Furthermore, the estimate of dimension for m-component nonlinear systems is also given.

关 键 词:Invariant subspace Nonlinear PDEs Exact solution SYMMETRY Dynamical system 

分 类 号:O175.29[理学—数学] V474.2[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象