Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?  

Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?

在线阅读下载全文

作  者:Aparna SHERLEKAR Richa RIKHY 

机构地区:[1]Indian Institute of Science, Education and Research, Biology, 301, Central Tower, Sai Trinity Bldg, Pashan, Pune 411021, India

出  处:《Frontiers in Biology》2012年第1期73-82,共10页生物学前沿(英文版)

摘  要:During embryo development in many metazoan animals, the first differentiated cell type to form is anepithelial cell. This epithelial layer is modified by developmental cues of body axes formation to give rise to various tissues. The cells that arise are mesenchymal in nature and are a source of other tissue types. This epithelial to mesenchymal transition is used for tissue type formation and also seen in diseases such as cancer. Here we discuss recent findings on the cellular architecture formation in the Drosophila embryo and how it affects the developmental program of body axes formation. In particular these studies suggest the presence of compartments around each nucleus in a common syncytium. Despite the absence of plasma membrane boundaries, each nucLeus not only has its own endoplasmic reticulum and Golgi complex but also its own compartmentalized plasma membrane domain above it. This architecture is potentially essential for morphogen gradient restriction in the syncytial Drosophila embryo. We discuss various properties of the dorso-ventral and the antero-posterior morphogen gradients in the Drosophila syncytium, which are likely to depend on the syncytial architecture of the embryo.During embryo development in many metazoan animals, the first differentiated cell type to form is anepithelial cell. This epithelial layer is modified by developmental cues of body axes formation to give rise to various tissues. The cells that arise are mesenchymal in nature and are a source of other tissue types. This epithelial to mesenchymal transition is used for tissue type formation and also seen in diseases such as cancer. Here we discuss recent findings on the cellular architecture formation in the Drosophila embryo and how it affects the developmental program of body axes formation. In particular these studies suggest the presence of compartments around each nucleus in a common syncytium. Despite the absence of plasma membrane boundaries, each nucLeus not only has its own endoplasmic reticulum and Golgi complex but also its own compartmentalized plasma membrane domain above it. This architecture is potentially essential for morphogen gradient restriction in the syncytial Drosophila embryo. We discuss various properties of the dorso-ventral and the antero-posterior morphogen gradients in the Drosophila syncytium, which are likely to depend on the syncytial architecture of the embryo.

关 键 词:morphogen gradient DROSOPHILA SYNCYTIUM EMBRYO cellular architecture 

分 类 号:Q959.117[生物学—动物学] S835[农业科学—畜牧学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象