检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨理工大学机械动力工程学院,哈尔滨150080
出 处:《振动.测试与诊断》2012年第1期46-50,160,共5页Journal of Vibration,Measurement & Diagnosis
基 金:国家科技重大专项子课题资助项目(编号:2009ZX04014-066-03);国家自然科学基金资助项目(编号:50875068);中国博士后基金资助项目(编号:20110491098)
摘 要:研究了一种应用连续小波特征和多类球支持向量机进行铣削系统颤振预报的方法,该方法基于连续小波变换提取铣削振动信号的特征,利用多类球支持向量机对正常铣削状态、颤振孕育状态和颤振爆发状态的振动信号进行三分类识别,通过识别颤振孕育状态预测颤振爆发。试验结果表明,在铣削颤振识别与预测中,铣削振动信号的连续小波特征与多类球支持向量机相结合具有良好的识别颤振孕育状态和颤振爆发状态的能力,颤振孕育状态的识别正确率达95.0%,颤振爆发状态的识别正确率达97.5%。A method of chatter forecast is studied by the application of continuous wavelet feature vector and support vector machine(SVM) for ball milling system.This method is based on continuous wavelet transformation to extract feature vector of milling vibration signal and multi-class spherical support vector machine is used to classify three classification and recognition such as normal milling state,chatter gestation state and chatter outbreak of state,which predicts the chatter outbreak by making a recognition of chatter gestation state.As experimental results show,there is a good ability to identify and forecast chatter in recognition and predict of milling vibration,which uses continuous wavelet feature vector and multi-class spherical SVM classifier to deal with milling vibration signal,recognition rate of chatter gestation state reaches 95.0%,then chatter outbreak state recognition rate is 97.5%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38