基于条件对数似然函数导数的贝叶斯网络分类器优化算法  被引量:19

An Optimization Algorithm of Bayesian Network Classifiers by Derivatives of Conditional Log Likelihood

在线阅读下载全文

作  者:王中锋[1] 王志海[1] 

机构地区:[1]北京交通大学计算机与信息技术学院,北京100044

出  处:《计算机学报》2012年第2期364-374,共11页Chinese Journal of Computers

基  金:国家自然科学基金(60673089;60973011)资助~~

摘  要:通常基于鉴别式学习策略训练的贝叶斯网络分类器有较高的精度,但在具有冗余边的网络结构之上鉴别式参数学习算法的性能受到一定的限制.为了在实际应用中进一步提高贝叶斯网络分类器的分类精度,该文定量描述了网络结构与真实数据变量分布之间的关系,提出了一种不存在冗余边的森林型贝叶斯网络分类器及其相应的FAN学习算法(Forest-Augmented Nave Bayes Algorithm),FAN算法能够利用对数条件似然函数的偏导数来优化网络结构学习.实验结果表明常用的限制性贝叶斯网络分类器通常存在一些冗余边,其往往会降低鉴别式参数学习算法的性能;森林型贝叶斯网络分类器减少了结构中的冗余边,更加适合于采用鉴别式学习策略训练参数;应用条件对数似然函数偏导数的FAN算法在大多数实验数据集合上提高了分类精度.In general, Bayesian network classifiers trained by discriminative strategy have higher classification accuracy than others. However, the performance of discriminative parameter learning algorithms is limited in dealing with redundant edges. In order to improve the classification aecuraey in a real situation, in this paper we describe the quantitative relations between Bayesian network structures and joint probability distributions, propose a Forest-Augmented Naive Bayes classifier and its learning algorithm. An FAN classifier is a kind of Bayesian network whose structure has few redundant edges, and FAN algorithm is optimized by properties of partial derivatives of conditional log likelihood. Experimental results have shown that redundant edges in the structure of a Bayesian network classifier could degrade classification performance in common situation, and most of restricted Bayeisian network classifiers have redundant edges. Therefore, FAN classifier without redundant edges is suitable for discriminative parameter learning strategy. On most of datasets, classification accuracies of classifiers trained by FAN algorithm are en hanced.

关 键 词:机器学习 数据挖掘 分类器 贝叶斯网络 鉴别式训练策略 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象