检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《传感器与微系统》2012年第3期29-31,35,共4页Transducer and Microsystem Technologies
基 金:国家科技重大专项基金资助项目(200912X07528-003-09);重庆市科技攻关计划资助项目(CSCT;2010AA2036)
摘 要:针对异构无线传感器网络节点高密度部署和事件发生存在"热点区域"问题,以区域覆盖率最大和网络能耗最小为优化目标,提出了一种基于多目标优化的二进制粒子群算法,对节点部署进行多目标优化。该算法采用概率感知模型,引入强支配系数使得解分布均匀,结合Pareto最优解选择排序和基于自适应权重的适应度分配,进而获得异构节点部署解。仿真结果表明:该算法能对目标空间进行广泛搜索,与NSGA—Ⅱ算法相比,算法具有良好的收敛性,能有效地提高网络的覆盖率和降低网络能耗。An algorithm based on multi-objective optimization binary particle swarm is proposed to solve the problem of node high-density deployment and events existing "hot spots" in heterogeneous wireless sensor networks. Area coverage is maximum and energy consumption is minimum are the optimization goals. Pro]~ability sensing model is used and strong predominance coefficient is introduced to provide a good diversity, both pareto optimum solution sorting and adaptive weight fitness assignment methods are used in this algorithm to get heterogeneous wireless sensor network' s node deployment solutions. Compared with NSGA-Ⅱ , the algorithm has good astringency and effectively improve network coverage and reduce energy consumption.
关 键 词:异构无线传感器网络 节点部署 多目标优化 粒子群算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249