基于经验模式分解法的光学相干层析成像去噪研究  被引量:9

Study of de-noising based on empirical mode decomposition method in optical coherence tomography

在线阅读下载全文

作  者:张仙玲[1,2,3] 高万荣[1] 卞海溢[1] 卢邱生[1] 

机构地区:[1]南京理工大学电光学院,江苏南京210094 [2]南京信息工程大学电信学院,江苏南京210044 [3]江苏省气象传感网工程技术中心,江苏南京210044

出  处:《光电子.激光》2012年第3期602-608,共7页Journal of Optoelectronics·Laser

基  金:国家自然科学基金(60978069);教育部高等学校博士学科点专项科研基金(200802880013);江苏省自然科学基金(BK2008412);苏州大学重点实验室基金(KJS01002)资助项目

摘  要:针对光学相干层析(OCT,optical coherence tomography)成像中存在的散斑噪声和扫描噪声,提出了采用经验模式分解(EMD,empirical mode decomposition)算法同时减小这两种噪声的思想。EMD是一种时频分析法,较傅立叶谱法能准确地确定时变非平稳的这两种噪声随时间变化的频率特性,从而获得更好的滤波效果。结果表明,通过合理设计EMD滤波参数,即可有效地同时减小散斑噪声和扫描噪声,信号的信噪比(SNR)提高(不考虑扫描噪声时,SNR达7dB左右,考虑到扫描噪声时,SNR提高达3dB左右),扫描噪声的条纹对比度降低60%以上,改善了成像质量,同时图像细节得到保留。与小波去噪法相比,本文方法具有滤波器设计简单、去噪效果明显及能同时有效地去除两种噪声的优点。Optical coherence tomography (OCT) has been shown to have advantages for obtaining images of biological tissues noninvasively and has great potential for applications in medical diagnosis. In this work,a method based on the empirical mode decomposition (EMD) method is adapted to improve OCT image quality by reducing the effects of noises. EMD is a time-frequency analysis, So it can more accurately analyze the time-varying non stationary noise signal compared with the domain transform method. The experimental results show that EMD method can effectively suppress speckle noise,which improves signal-to-noise (SNR) to 7 dB and 3 dB for absence and presence of the scanner noise. It can also effectively remove the stripe noise due to instability of the scanning reference mirror in OCT as long as the EMD filter parameter is set properly. The fringe contrast can be reduced by more than 60 %. The quality of OCT images is improved. Compared with the wavelet de-noising method,EMD has the advantages of simple operation steps, obvious de-noising effect, and the ability of effectively removing two kinds of noises.

关 键 词:医用光学 光学相干层析(OCT) 经验模式分解(EMD) 信号去噪 

分 类 号:TN247[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象