颈动脉MR图像分割和三维重建在斑块定位中的应用  被引量:2

Application of carotid artery MR images segmentation and three-dimensional reconstruction in locating carotid atherosclerotic lesions

在线阅读下载全文

作  者:邵慧妍[1] 秦海强[2] 侯园园[1] 周萍[1] 夏翃[1] 

机构地区:[1]首都医科大学生物医学工程学院,北京市100069 [2]首都医科大学附属北京天坛医院神经内科,北京市100050

出  处:《中国组织工程研究与临床康复》2011年第43期8019-8022,共4页Journal of Clinical Rehabilitative Tissue Engineering Research

基  金:首都医科大学基础临床合作基金项目(10JL51);课题名称:颈动脉血流动力学模型建立及临床应用~~

摘  要:背景:医学图像的三维重建在医疗诊断、实验分析中起着越来越重要的作用,它是一项复杂的任务,其中目标图像的分割是首要且重要的一步。目的:探索对颈动脉MR图像的图像分割及三维重建方法,并探讨三维模型在颈动脉斑块定位中的应用。方法:选择3DTOF序列图像对其进行基于最大熵原理的阈值分割,并与普通方法的结果做比较;进一步用数学形态学分割方法提取出颈动脉;进行三维重建,利用三维模型进行斑块的初步定位。结果与结论:基于最大熵原理的阈值分割适于对颈动脉3DTOF序列图像的分割,用数学形态学分割方法进行后续分割可得到目标图像。三维重建后的模型对于斑块定位有辅助作用。BACKGROUND: The technology of three-dimensional (3D) reconstruction of medical images has been playing an increasingly important role in clinical diagnosis and research. The 3D reconstruction technique is rather complex, with the image segmentation being the first and most important step. OBJECTIVE: To explore the carotid artery MR image segmentation and 3D reconstruction methods for its application in locating carotid atherosclerotic lesions. METHODS: The 3D TOF sequence images were chosen and segmented by the threshold segmentation based on maximum entropy, which was followed by the mathematical morphological method to take the carotid artery blood from the background successfully. Finally, the 3D model of the carotid blood was produced with the aid of the Mimics software and the location of carotid atherosclerotic lesions was identified easily. RESULTS AND CONCLUSION: For the 3D TOF sequence images segmentation, the threshold segmentation based on maximum entropy is better and suitable. Besides, the mathematical morphological method takes responsibility for the following segmentation. The 3D model of carotid blood is of great help in locating carotid atherosclerotic lesions.

关 键 词:最大熵 阈值分割 数学形态学方法 三维重建 颈动脉斑块 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象