检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:章英[1,2] 贺立源[2] 叶颖泽[3] 吴昭辉[4]
机构地区:[1]华中农业大学理学院,武汉430070 [2]华中农业大学资源与环境学院,武汉430070 [3]华中农业大学现代教育技术中心,武汉430070 [4]河南省农业科学院烟草研究中心,河南许昌461000
出 处:《湖北农业科学》2012年第3期583-585,共3页Hubei Agricultural Sciences
基 金:国家科技支撑计划项目(2006BAD10A1304);云南省烟草烟叶公司攻关项目(2009YN010)
摘 要:为了探索一种快速有效的烤烟烟叶产地鉴别方法,利用近红外光谱技术结合最小二乘支持向量机(LS-SVM)对烤烟烟叶的产地进行了判别。选择云南、湖北、河南三地不同等级烤烟烟叶作为研究对象,对原始光谱数据进行平滑和附加散射校正(MSC)预处理后再进行主成分分析,选择4~12个主成分作为输入变量进行LS-SVM建模。结果显示,该LS-SVM模型预测效果较好,预测相关系数rp≥0.990 7,预测标准误差(SEP)和预测均方根误差(RMSEP)分别为1.755 1和1.737 3,优于偏最小二乘回归(PLS)的预测结果,基于LS-SVM的近红外光谱技术能够很好地对烟叶产地进行判别。In order to explore a fast and efficient method which determines the producing area of tobacco leaf,near-infrared reflectance spectroscopy with least squares-support vector machines(LS-SVM) was applied to determine producing area of tobacco leaf.Three producing areas including Yunnan,Hubei and Henan were selected as the research objects.As the pretreatments of the optimal smoothing way,moving average with three segments and multiplication scatter correction(MSC) were applied to reduce the noise of the spectra.After the principle component analysis,4 to 12 principal components(PCs) were chosen as the inputs of LS-SVM models.The Results show that the prediction performance of the LS-SVM model with 12 PCs is better than partial least square(PLS) model.Its correlation coefficient of prediction set(rp) is 0.990 7,standard error of prediction(SEP) is 1.755 1,and root mean square error of prediction(RMSEP) is 1.737 3.It is concluded that NIR spectroscopy with LS-SVM is a feasible method to determine the producing area of tobacco leaf.
分 类 号:TN219[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229