检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]昆明理工大学信息工程与自动化学院,云南昆明650500
出 处:《甘肃科学学报》2012年第1期72-76,共5页Journal of Gansu Sciences
基 金:国家自然科学基金资助项目(30860055)
摘 要:运动目标分割是交通事件检测的基础,分割的质量直接影响道路事件检测的准确性.依次研究了平均法、连续帧差法、混合高斯建模及阴影消除等算法,并综合应用于道路监控视频的运动目标分割的各阶段.针对连续帧差法和混合高斯建模算法进行了仿真实验,结果表明,混合高斯建模算法更适合做运动目标的分割,但由此得到的前景运动目标常受到阴影干扰,所以在混合高斯建模算法中,加入了消除运动目标阴影的算法.通过实验仿真表明,优化的该算法能够更加清晰地分割出前景运动目标图像.The moving object segmentation is the basis for traffic incident detection.The quality of segmentation algorithm directly influences the accuracy of traffic incident detection.The average method,the consecutive frame difference method,the Gaussian mixture modeling algorithms and shadow elimination are studied here.These algorithms are integrated and applied in various stages of the moving object segmentation in traffic surveillance videos.In particular,the consecutive frame difference method and the Gaussian mixture modeling algorithm are taken into experiments.The results indicate that the Gaussian mixture modeling algorithm is more suitable for the moving object segmentation.However,the foreground moving object is often interfered by the shadow,so the algorithms of shadow removal are added to the Gaussian mixture modeling algorithm.The experimental results show that the optimized algorithm can more accurately segment the foreground moving object images.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42