基于集成成像的深度提取线性插值增强方法  被引量:7

Enhanced depth extraction based on integral imaging with linear interpolation

在线阅读下载全文

作  者:徐晶[1] 明海[1] 

机构地区:[1]中国科学技术大学光学与光学工程系,安徽合肥230026

出  处:《量子电子学报》2012年第2期135-141,共7页Chinese Journal of Quantum Electronics

基  金:国家自然科学基金重点项目(60736037)

摘  要:分别用定义的深度提取精密度和深度提取正确度对实验结果进行分析,从结果的整体分布和整体偏差两个方面证明了线性插值对基于集成成像的深度提取具有增强作用。由于单元透镜数量众多,单个图像传感器像素个数有限,传统的基于集成成像的深度提取受到单元图像低分辨率的制约。无需额外的硬件移动,采用线性插值将单元图像像素个数增加一倍,深度提取精密度提升了20%,深度提取正确度提升了15%。集成成像可以同时实现三维场景的重建和深度的提取。这是其他深度提取技术所不具备的特点。插值后得到的深度信息,使目标物体的重建图像更为清晰。基于集成成像的深度提取可应用于三维场景的背景去除。The extracted depth of object points are assessed by two defined evaluation measurements, the depth precision and depth correctness. The evaluation results prove the enhancement of depth extraction based on integral imaging by linear interpolation method from two aspects, the whole distribution and devi-ation. Because of the large number of elemental lenses and limited number of sensor pixels, the conventional depth extraction technique based on integral imaging is affected by low resolution of elemental images. The elemental images are scaled to twice by linear interpolation without any hardware movement. The preci- sion of depth extraction is increased by 20%. The correctness of depth extraction is increased by 15%. In integral imaging, the reconstruction of three-dimensional scene and extraction of depth can be completed at the same time. It is the advantage that other methods of depth extraction do not have. The quality of reconstructed image becomes better by using the extracted depth information after interpolation. Depth extraction based on integral imaging can be used in the background removal of three dimensional scenes Key words: image and information processing; depth extraction; integral imaging; linear interpolation three-dimensional scene reconstruction

关 键 词:图像与信息处理 深度提取 集成成像 线性插值 三维场景重建 

分 类 号:O438[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象