检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]深圳信息职业技术学院计算机应用系,广东深圳518029
出 处:《计算机工程与应用》2012年第9期238-241,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.71101096);广东省自然科学基金(No.10451802904005327);深圳信息职业技术学院教学研究项目(No.2010015)
摘 要:为实现更为客观合理的学生评教,基于粗糙集方法进行智能化分析。粗糙集方法必然涉及到分析含有决策属性的决策表,而实际学生评教中由于缺乏客观的尺度评定教师的教学质量,造成相应决策属性的未知性。借鉴督导专家评价的优势,基于Kruskal最大树模糊聚类方法对专家评价数据予以划分来获取决策属性,与学生评教数据集组合,构造完整的决策表。基于粗糙集方法从信息熵的角度来客观求取各评教指标的权重值,完成对待评教教师的决策评价分析。实例分析及对比实验证明了方法的有效性和优越性。In order to obtain objective and reasonable results of students' evaluation of teaching, this paper adopts an intelligent ap- proach based on rough set theory. Rough set method can only process decision table containing given decision attribute. However, dur- ing the evaluation of teaching, the decision attribute is usually lost because of lacking objective scales in practical measurement. Point- ing at this problem, decision attribute values are acquired from experts' evaluation data set based on the method of Kruskal maximum tree fuzzy clustering, and the integrated decision table is designed by combining the students' evaluation data set with the decision attri- bute data. Objective weight values of all evaluation indexes are obtained under the information entropy method based on rough set theo- ry, and the evaluation is finished for the candidates. Example analysis and contrastive experiments with other existing evaluation meth- ods are given to demonstrate the effectiveness and superiority of the proposed new method.
关 键 词:粗糙集 条件信息熵 学生评教 评教指标权重 Kruskal最大树模糊聚类
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] G4[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.202.164