检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学电气与信息工程学院,长沙410082 [2]湘潭大学材料与光电物理学院,湘潭411105
出 处:《电子测量与仪器学报》2012年第2期171-176,共6页Journal of Electronic Measurement and Instrumentation
摘 要:在对测量数据进行曲线拟合辨识时,常用的误差指标,如均方根误差和误差平方和,没有考虑样本数据的概率统计特性。基于信息熵原理介绍了一种新的曲线拟合辨识方法。将曲线拟合过程看作加性信道,建立了曲线拟合模型。首先将样本数据进行多种曲线拟合,采用最大熵方法根据样本值估计出自变量的概率密度函数和信息熵;再根据拟合曲线计算拟合结果熵和误差熵,最后计算出拟合模型的互信息,选取互信息最大的曲线作为样本的最佳拟合曲线,并给出了应用实例。由于该方法充分考虑了样本数据的概率统计规律,因此能提高测量精度,具有更大的适用范围,对于测量信息论的研究有一定的参考价值。In the recognition of curve fitting for measurement data, common error indexes, such as RMS error and error square sum, don't consider sample's probability statistics properties. A curve fitting recognition method was introduced based on information entropy. A curve fitting model was established through taking a curve fitting course as an additive channel. First, variety curves were selected to fit sample. The Maximum Entropy Method was used to estimate the independent variable's probability density function and information entropy according to sample. Then, the fitting result entropy and the error entropy were calculated according to fitting curve. Finally, the fitting model's mutual information was calculated. The curve with maximum mutual information was selected as sample's optimal fitting curve. An application example was provided in the end. Since the method fully considers sample's probability statistics properties, the method can improve measurement's precision, has more extensive adaptability and some reference value to research on measurement information theory.
分 类 号:TP202[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117