基于灰色关联分析的LS-SVM铁路货运量预测  被引量:49

Forecast of Railway Freight Volumes Based on LS-SVM with Grey Correlation Analysis

在线阅读下载全文

作  者:耿立艳[1] 张天伟[2] 赵鹏[3] 

机构地区:[1]石家庄铁道大学经济管理学院,河北石家庄050043 [2]石家庄铁道大学交通运输学院,河北石家庄050043 [3]河北科技师范学院欧美学院,河北秦皇岛066004

出  处:《铁道学报》2012年第3期1-6,共6页Journal of the China Railway Society

基  金:河北省交通运输厅科技计划项目(R-2010100);国家软科学研究计划项目(2010GXQ5D320);教育部人文社会科学研究青年基金项目(11YJC790048)

摘  要:为提高对铁路货运量的预测精度及建模速度,在分析货运量影响因素基础上,提出基于灰色关联分析的LS-SVM铁路货运量预测方法。将货运量影响因素分为社会需求与铁路供给两方面因素,采用灰色关联分析法对两方面因素与货运量进行相关性分析,根据灰色关联度值,结合定性分析筛选LS-SVM输入变量,简化LS-SVM结构,再通过随机权重粒子群(SIWPSO)算法优化选择LS-SVM模型参数。通过对我国1980~2009年铁路货运量实例分析表明:该方法具有较快的收敛速度和较高的预测精度。On the basis of analyzing the influencing factors of railway freight volumes,the LS-SVM railway freight volume forecast method with grey correlation analysis was proposed to improve the predicting accuracy and modeling speed of railway freight volumes.The influencing factors of railway freight volumes were divided into social demand factors and railway supply factors.Correlations between the two-category factors and railway freight volumes were analyzed respectively by grey correlation analysis.The input variables of LS-SVM were screened by the grey correlation degree value together with qualitative analysis to simplify the LS-SVM structure.Finally,the stochastic inertia weight PSO(SIWPSO) algorithm was used to optimize the parameters of the LS-SVM model.Statistics of the railway freight volumes from 1980 to 2009 indicate that the proposed forecast method provides a better convergence rate and higher predicting accuracy.

关 键 词:铁路货运量 预测 灰色关联分析 最小二乘支持向量机 

分 类 号:U294.13[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象