Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Volterra Delay-integro-differential Equations  被引量:4

Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Volterra Delay-integro-differential Equations

在线阅读下载全文

作  者:Rui QI Cheng-jian ZHANG Yu-jie ZHANG 

机构地区:[1]China1School of Science, Naval University of Engineering, Wuhan 430033, [2]School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China [3]School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

出  处:《Acta Mathematicae Applicatae Sinica》2012年第2期225-236,共12页应用数学学报(英文版)

基  金:supported by National Natural Science Foundation of China (No. 11171125,91130003);Natural Science Foundation of Hubei (No. 2011CDB289);Youth Foundation of Naval University of Engineering (No.HGDQNJJ10003)

摘  要:This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.

关 键 词:Volterra delay-integro-differential equations multistep Runge-Kutta methods dissipativity (k l)-algebraically stable 

分 类 号:O241.81[理学—计算数学] O175.6[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象