L^p BOUNDEDNESS OF COMMUTATOR OPERATOR ASSOCIATED WITH SCHRDINGER OPERATORS ON HEISENBERG GROUP  被引量:3

L^p BOUNDEDNESS OF COMMUTATOR OPERATOR ASSOCIATED WITH SCHRDINGER OPERATORS ON HEISENBERG GROUP

在线阅读下载全文

作  者:李澎涛 彭立中 

机构地区:[1]Department of Mathematics,Shantou University [2]LMAM School of Mathematical Sciences,Peking University

出  处:《Acta Mathematica Scientia》2012年第2期568-578,共11页数学物理学报(B辑英文版)

基  金:supported by NSFC 11171203, S2011040004131;STU Scientific Research Foundation for Talents TNF 10026;supported by NSFC No.10990012,10926179;RFDP of China No.200800010009

摘  要:Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness.Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness.

关 键 词:COMMUTATOR BMO Heisenberg group BOUNDEDNESS Riesz transforms as-sociated to SchrSdinger operators 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象