Many keys to push: diversifying the 'readership' of plant homeodomain fingers  被引量:4

Many keys to push: diversifying the 'readership' of plant homeodomain fingers

在线阅读下载全文

作  者:Yuanyuan Li Haitao Li 

机构地区:[1]Center for Structural Biology,School of Life Sciences and School of Medicine,Tsinghua University,Beijing 100084,China

出  处:《Acta Biochimica et Biophysica Sinica》2012年第1期28-39,共12页生物化学与生物物理学报(英文版)

摘  要:Covalent histone modifications-referred to as the 'histone code', are recognized by a wealth of effector or 'reader' modules, representing one of the most fundamental epigenetic regulatory mechanisms that govern the structure and function of our genome. Recent progresses on combinatorial readout of such 'histone code' promote us to reconsider epigenetic regulation as a more complicated theme than we originally anticipated. In particular, plant homeodomain (PHD) fingers, which are evolved with fine-tuned residue composition and integrated or paired with other reader modules, display remarkably diverse 'readership' other than its founding-member target, histone H3 trimethylation on lysine 4 (H3K4me3). In this review, we detail the latest progresses of PHD finger research, especially from the perspective of structural biology, and highlight the versatile binding features and biological significance of PHD fingers.Covalent histone modifications-referred to as the 'histone code', are recognized by a wealth of effector or 'reader' modules, representing one of the most fundamental epigenetic regulatory mechanisms that govern the structure and function of our genome. Recent progresses on combinatorial readout of such 'histone code' promote us to reconsider epigenetic regulation as a more complicated theme than we originally anticipated. In particular, plant homeodomain (PHD) fingers, which are evolved with fine-tuned residue composition and integrated or paired with other reader modules, display remarkably diverse 'readership' other than its founding-member target, histone H3 trimethylation on lysine 4 (H3K4me3). In this review, we detail the latest progresses of PHD finger research, especially from the perspective of structural biology, and highlight the versatile binding features and biological significance of PHD fingers.

关 键 词:histone code PHD finger combinatorialreadout lysine methylation EPIGENETICS 

分 类 号:Q943[生物学—植物学] TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象