检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高鹍[1,2] 邢国平[3] 孙德翔[3] 黄勇[1]
机构地区:[1]空军航空大学研究生队 [2]中国人民解放军93115部队 [3]空军航空大学训练部
出 处:《电光与控制》2012年第3期100-105,共6页Electronics Optics & Control
摘 要:备件库存消耗预测是多因素综合影响下的非线性、小样本预测问题,且不同备件消耗的影响因素有所差异。针对上述问题,提出了一种基于灰色关联分析和支持向量机回归相结合的备件库存消耗预测方法。首先利用灰色关联分析计算出各影响因子与备件库存消耗的灰色关联度,量化了各因子对备件库存消耗的影响程度;再将筛选出的主因子作为支持向量机的输入,并利用遗传算法对支持向量机参数进行寻优,避免人为选择参数的盲目性,从而有针对性地对机体不同备件进行预测。最后,通过实证分析,验证了该方法应用于备件库存消耗预测的有效性和优越性,预测精度高于传统的备件预测模型。The reserve consuming prediction of spare parts is a multi-factor influenced, non-linear and small-sample problem, and different spare parts have different influencing factors. Aiming at the problem, we proposed a method for predicting the consumption of reserved spared parts based on grey correlation analysis and Support Vector Machine (SVM). Firstly, grey relational degree between the influencing factors and the spare part consumption was calculated by grey correlation analysis, and the effect of each factor on the consumption was quantized. Then, the main factors gained were taken as input of SVM, and genetic algorithm was used to optimize the parameters of SVM to avoid blindness in parameter selection. Thus could make right prediction for different spare parts. Lastly, the model was proved to be effective for reserve consuming prediction of spare parts, which is higher in accuracy than other traditional models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4