检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆400044
出 处:《电力系统保护与控制》2012年第7期60-65,共6页Power System Protection and Control
基 金:国家自然科学基金(51077137);中央高校基本科研业务费资助(CDJXS11151151)~~
摘 要:S变换由于时频分辨率固定,从而导致定位暂态电能质量扰动的效果差。提出一种基于广义S变换的扰动定位新方法,利用高频处时间幅值曲线的突变点峰值进行定位检测,以提高扰动的定位精度。首先通过广义S变换得到扰动信号的模时频矩阵,然后利用高频处时间幅值曲线定位扰动的起止时刻,再根据最大频谱曲线、基频幅值曲线与定位结果提取四个识别特征量,最后基于分类规则树方法实现扰动信号的自动分类。仿真结果表明,所提出的定位方法简单直观,精度较高;提取的识别特征量少而有效,分类效果良好。S-transform has fixed time-frequency resolution, leading to poor results of localizing transient power quality disturbances. A new method to localize the disturbances is proposed based on generalized S-transform. The method detects mutation peak in the high frequency time-amplitude curve, in order to increase localization accuracy. At first, modulus time-frequency matrix is calculated by generalized S-transform, then the disturbances' start-stop time is localized using the high frequency time-amplitude curve, and four identification features are extracted according to maximum frequency spectrtun curve, fundamental frequency amplitude curve and the localization results. At last, automatic classification of disturbance signals is performed by use of a rule-based decision tree. Simulation results show that the proposed localization method is simple and intuitive, with high accuracy. The number of identification features is small and they are effective with good classification results. This work is supported by National Natural Science Foundation of China (No. 51077137).
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.148.202