约束性相联规则发现方法及算法  被引量:62

Algorithms for Mining Constrained Association Rules

在线阅读下载全文

作  者:崔立新[1] 苑森淼[2] 赵春喜 

机构地区:[1]空军第二航空学院,长春130022 [2]吉林工业大学计算机科学与工程系,长春130022

出  处:《计算机学报》2000年第2期216-220,共5页Chinese Journal of Computers

基  金:国家自然科学基金!( 69873 0 19)

摘  要:文中研究了在大型事务数据库中发现有约束条件的相联规则问题 ,提出了有效实现约束性相联规则发现的两种方法 :过滤数据库算法 Filtering和频繁项集生成算法 Separate.这两种可以同时并用的方法比已有算法运算效率有显著提高 .The problem of discovering association rules has received considerable research attention and some fast algorithms for mining association rules have been developed. The authors consider the problem of discovering constrained association rules between items in a large database of sales transactions. Instead of applying such constraints as a post processing step, integrating them into the mining algorithm can dramatically reduce the execution time. This paper presents two new algorithms called Filtering and Separate for solving this problem that are greatlly different from the known algorithms. The two proposed algorithms can be used separately and also can be used together. By discussing their tradeoffs, it shows that Filtering can decrease the size of concerned database effectively, and Separate outperforms the known algorithms greatlly in the number of candidates generated.

关 键 词:数据挖掘 相联规则 项约束 事务数据库 

分 类 号:TP392[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象