Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro  被引量:7

Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro

在线阅读下载全文

作  者:Yin TONG Yan-yan LIU Liang-shun YOU Wen-bin QIAN 

机构地区:[1]Institute of Hematology,The First Affiliated Hospital,College of Medicine,Zhejiang University,Hangzhou 310003,China

出  处:《Acta Pharmacologica Sinica》2012年第4期542-550,共9页中国药理学报(英文版)

基  金:Acknowledgements This work was supported by the Zhejiang Provincial Natural Science Foundation of China (R2090392) and Science and the Technology Foundation of Zhejiang Province (2011c23089). We are grateful to Prof Tamotsu YOSHIMORI, PhD, for providing the EGFP-LC3 plasmid and to Li WANG (Zhejiang University) for her help with TEM.

摘  要:Aim: The efficacy of the Akt inhibitor perifosine against chronic myeloid leukemia (CML) cells and its mechanisms of action are unknown. In this study, the cytotoxic effects of perifosine on CML and acute myeloid leukemia (AML) cell lines were compared to elucidate the mechanisms underlying the differences. Methods: Human AML cell lines Kasumi-1 and HL-60, and the CML cell line K562 were used. Cell viability was quantitated using MTT assay. Apoptosis was determined using Annexin V-FITC/propidium iodide and Hoechst staining, which were followed by flow cytometry and fluorescence microscopy analysis, respectively. Caspase pathway activation and the expression of autophagy-related genes were examined using Western blot. Autophagy was studied using electron microscopy, the acridine orange staining method, and GFP-LC3 was examined with fluorescence microscopy. Results: In contrast to AML cell lines, the CML cell lines K562 and K562/G (an imatinib-insensitive CML cell line) were resistant to perifosine (2.5-20 μmol/L) in respect to inhibiting cell growth and inducing apoptosis. Perifosine (2.5, 5, and 10 μ/L) inhibited Akt and its phosphorylation in AML cells, but not in CML cells. Treatment with perifosine (20 μmol/L) resulted in autophagy in CML cells as shown by the increased formation of acidic vesicular organelles and the accumulation of LC3-11. Treatment of CML cells with perifosine (5, 10, and 20 μmol/L) dose-dependently upregulated AGT5, but not Beclin I at the protein level. Furthermore, inhibition of autophagy by chloroquine (40 nmol/L) significantly suppressed the cell growth and induced apoptosis in CML cells treated with perifosine (20 μmol/L). Conclusion: Our results show that CML cell lines were resistant to the Akt inhibitor perifosine in vitro, which is due to perifosine-induced protective autophagy and upregulation of ATG5.Aim: The efficacy of the Akt inhibitor perifosine against chronic myeloid leukemia (CML) cells and its mechanisms of action are unknown. In this study, the cytotoxic effects of perifosine on CML and acute myeloid leukemia (AML) cell lines were compared to elucidate the mechanisms underlying the differences. Methods: Human AML cell lines Kasumi-1 and HL-60, and the CML cell line K562 were used. Cell viability was quantitated using MTT assay. Apoptosis was determined using Annexin V-FITC/propidium iodide and Hoechst staining, which were followed by flow cytometry and fluorescence microscopy analysis, respectively. Caspase pathway activation and the expression of autophagy-related genes were examined using Western blot. Autophagy was studied using electron microscopy, the acridine orange staining method, and GFP-LC3 was examined with fluorescence microscopy. Results: In contrast to AML cell lines, the CML cell lines K562 and K562/G (an imatinib-insensitive CML cell line) were resistant to perifosine (2.5-20 μmol/L) in respect to inhibiting cell growth and inducing apoptosis. Perifosine (2.5, 5, and 10 μ/L) inhibited Akt and its phosphorylation in AML cells, but not in CML cells. Treatment with perifosine (20 μmol/L) resulted in autophagy in CML cells as shown by the increased formation of acidic vesicular organelles and the accumulation of LC3-11. Treatment of CML cells with perifosine (5, 10, and 20 μmol/L) dose-dependently upregulated AGT5, but not Beclin I at the protein level. Furthermore, inhibition of autophagy by chloroquine (40 nmol/L) significantly suppressed the cell growth and induced apoptosis in CML cells treated with perifosine (20 μmol/L). Conclusion: Our results show that CML cell lines were resistant to the Akt inhibitor perifosine in vitro, which is due to perifosine-induced protective autophagy and upregulation of ATG5.

关 键 词:Akt inhibitor PERIFOSINE chronic myeloid leukemia acute myeloid leukemia AUTOPHAGY APOPTOSIS beclin 1 ATG5 

分 类 号:Q511[生物学—生物化学] O614.33[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象