冰风暴灾害下输电线路故障概率预测  被引量:27

Probabilistic Prediction of Transmission Line Fault Resulted from Disaster of Ice Storm

在线阅读下载全文

作  者:杨洪明[1] 黄拉 何纯芳[1] 易德鑫[1] 

机构地区:[1]长沙理工大学电气与信息工程学院,湖南省长沙市410114 [2]湖南省郴州市水利水电勘察设计研究院,湖南省郴州市423000

出  处:《电网技术》2012年第4期213-218,共6页Power System Technology

基  金:国家自然科学基金(71071025);湖南省杰出青年科学基金(10JJ1010);教育部新世纪优秀人才支持计划(NCET-08-0676);湖南省高校创新平台开放基金(10K003)~~

摘  要:针对冰风暴灾害下输电线路运行故障问题,提出了基于极端学习机和Copula函数的断线倒塔概率预测模型。该模型运用广义极值分布刻画冰风暴灾害下冻雨量、风速、输电线和铁塔冰、风荷载的随机特性,并通过ELM网络预测出实时变化的GEV分布的形状参数、尺度参数和位置参数。随后考虑冰、风荷载之间的概率相关性,借助Clayton-Copula建立冰、风荷载的联合概率分布,从而实现输电线和铁塔的实时故障概率预测。结合湖南郴州电网的历史数据展开算例分析,验证了该预测方法的有效性和准确性。In allusion to transmission line fault resulted from the disaster of ice storm, based on extreme learning machine (ELM) and Copula function a probabilistic prediction model for transmission line breakage and tower topple over is proposed. By use of generalized extreme value (GEV) distribution, the proposed model depicts the probabilistic characteristics of excessive freezing rainfall, wind speed, wind load and ice load of transmission line and tower under the disaster of ice storm, and by means of FLM network the varying parameters of GEV distribution's shape scale and location are predicted, and then considering probability correlation between wind load and ice load and by means of Clayton-Copula function the joint probability distribution of ice load and wind load is established, thus the realtime fault probability prediction of transmission line and towers is implemented. Based on historical data of Chenzhou power network in Hunan province, both effectiveness and accuracy of the proposed prediction method are verified by the results of calculation example.

关 键 词:极端学习机 广义极值 Clayton—Copula函数 输电线路 故障概率 冰风暴 

分 类 号:TM714[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象