基于意外度的关联规则深层知识发现及应用研究  被引量:1

Research on Second Order Association Rule Knowledge Mining Algorithm and Application Based on Unexpectedness

在线阅读下载全文

作  者:李军[1,2,3] 黄安强[4] 张玲玲 石勇[1,2] 

机构地区:[1]中国科学院研究生院管理学院,北京100190 [2]中国科学院虚拟经济与数据科学研究中心,北京100190 [3]英大泰和财产保险股份有限公司,北京100005 [4]北京航空航天大学经济管理学院,北京100190

出  处:《管理评论》2012年第3期108-114,共7页Management Review

基  金:国家自然科学基金项目(71071151;70921061);中国科学院研究生院院长基金项目(A类)(085102HN00)

摘  要:为了弥补传统关联规则挖掘产生大量冗余规则、难以直接用于决策支持的不足,本文提出了一种基于用户已有知识的规则意外度评价方法,并在此基础上设计了基于意外度的深层关联规则挖掘算法。算法的优点在于能够将用户已知的规则作为领域知识加入到数据挖掘过程从而有效过滤和已知规则相近的冗余规则,并且可以将新得到的规则加入知识库中实现知识的积累和重用。最后本文采用一个商场数据验证了该算法的有效性,并且对具有回馈模式的关联规则在商品促销中的作用进行了分析。This paper designs a method of evaluating association rule expectedness and applies it to the new association rule mining algorithm which is called Association Rule Mining Based on Unexpectedness.This new algorithm has two advantages: first,this algorithm can effectively screen those redundant and useless rules;second,this algorithm is able to add new association rules into knowledge base to accumulate and reuse knowledge.This paper validates the efficiency of the algorithm by a test of a data set of commodity,and then analyzes the use of association rules with a feedback pattern.

关 键 词:意外度 关联规则 商品促销 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象