检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程启明[1] 胡晓青[1] 王映斐[1] 薛阳[1]
机构地区:[1]上海电力学院电力与自动化工程学院,上海200090
出 处:《热能动力工程》2012年第2期232-236,268,共5页Journal of Engineering for Thermal Energy and Power
基 金:国家自然科学基金项目(61040013);上海市教委重点学科建设项目(J51301)
摘 要:蒸汽发生器水位直接影响到整个核电站的安全及稳定运行,但蒸汽发生器本身由于所具有的高度复杂性、非线性性、时变性等特性,导致传统的串级PID控制等方法难以取得好的控制效果。本研究在串级控制的基础上,采用模糊神经网络来对蒸汽发生器水位进行控制,该控制算法能够充分发挥模糊控制及神经网络的优点。另外,为了减小模糊神经网络参数初值的选择对控制器的性能影响,将一种改进型遗传算法用于模糊神经网络控制器的参数优化。仿真结果表明,设计的控制方法无论是抗干扰能力还是在鲁棒性方面与传统的串级PID控制及常规的模糊神经网络控制相比较都有了很大的提高。The water level in a steam generator will directly influence the safe and stable operation of a whole nuclear power plant.However,the highly complexity,nonlinearity and time variation etc.characteristics of the steam generator itself cause the traditional cascade PID(proportional,integral and differential) control and other methods difficult to achieve a good control effectiveness.On the basis of the cascade control,the authors adopted the fuzzy neural network to control the water level of a steam generator.Such a control algorithm can give full play of the merits of the fuzzy control and neural network.In addition,to diminish the influence of the controller performance on the initial value selection of the fuzzy neural network,an improved genetic algorithm was used for parameter optimization of the fuzzy neural network controller.The simulation results show that both interference-resistant capacity and robustness of the control method thus designed are improved greatly when compared with those of the traditional cascade PID control and conventional fuzzy neural network control.
关 键 词:蒸汽发生器 水位控制 模糊神经网络 改进型遗传算法 串级PID控制
分 类 号:TL362[核科学技术—核技术及应用] TK172[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222