检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]衡阳师范学院计算机科学系,湖南衡阳421008 [2]衡阳师范学院数学系,湖南衡阳421008
出 处:《安徽农业科学》2012年第10期5765-5767,5911,共4页Journal of Anhui Agricultural Sciences
基 金:衡阳师范学院科研基金资助项目(09A36)
摘 要:[目的]研究基于随机文法云模型预测RNA二级结构的方法。[方法]将云模型引入到随机文法模型中,提出适合于词汇化随机文法模型的机器学习算法,通过词网格模型对RNA序列进行词条获取和划分,再经过云分类器搜索每个词条被标注为某种二级结构类型的最大概率,然后将这些词条信息作为先验信息在随机文法云模型训练过程中引入,实现对RNA二级结构的预测,并对该方法进行试验检测。[结果]试验测试表明,在随机文法模型中引入云模型后,其在预测的准确度和搜索速度上较单纯的随机文法效果有明显改善。[结论]该研究为随机文法模型在RNA二级结构预测中的广泛应用奠定了基础。[Objective] To study the method based on stochastic grammar cloud model for RNA secondary structure prediction.[Method] By introducing cloud model into stochastic grammar model,a machine learning algorithm which was suitable for the lexicalized stochastic grammar model was proposed.The word grid mode was used to extract and divide RNA sequence to acquire lexical substring,and the cloud classifier was used to search the maximum probability of each lemma which was marked as a certain secondary structure.Then,the lemma information was introduced into the training stochastic grammar process as prior information,realizing the prediction on the secondary structure of RNA,and the method was tested by experiment.[Result] the experimental results show that the prediction accuracy and searching speed of stochastic grammar cloud model are significantly different from the prediction processed with simple stochastic grammar.[Conclusion] This study laid the foundation for the wide application of stochastic grammar model for RNA secondary structure prediction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.31.119