检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨帆[1] 林琛[2] 周绮凤[1] 符长虹[1] 罗林开[1]
机构地区:[1]厦门大学自动化系,厦门361005 [2]厦门大学计算机科学系,厦门361005
出 处:《系统工程理论与实践》2012年第4期815-825,共11页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(60975052);中央高校基本科研业务费专项资金(2010121065)
摘 要:随机森林被广泛应用于包括癌症诊断在内的生物信息学领域.从自适应k近邻的角度分析了随机森林的分类机理,分析其存在的信息损失,据此提出一种新的投票机制,称为基于随机森林的潜在k近邻算法RF-PN,能够充分利用决策树上的OOB样本信息,显著改善随机森林的分类性能.6个癌症基因表达数据集上的对比实验表明,RF-PN的分类准确率优于原算法.Random forests(RF) has been widely used in bioinformatics especially in cancer diagnosis. This paper studies the classification scheme of RF from the viewpoint of adaptive k nearest neighbors, analyzes the information loss in RF,and proposes a new voting method called RF-based potential nearest neighbor which can use the information of OOB samples in each tree and show significant improvement. Comparison result on 6 cancer gene expression datasets demonstrated that RF-PN got better predictive accuracy than RF.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.119