检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电源技术》2012年第4期491-494,共4页Chinese Journal of Power Sources
摘 要:在深入研究模糊神经网络模型的基础上,引入k-means聚类分析的方法对模型输入数据进行预处理,改进模型推理层,并对系统输出进行简化,提出了一种新的蓄电池剩余容量的预测模型。实验仿真表明,与基本模糊神经网络相比改进模糊神经网络的预测精度更高,所需时间更短,实现了对航空蓄电池剩余容量的实时、准确预测。Based on the in-depth study of fuzzy and neural network, a new prediction model for storage battery's residual capacity was presented. The clustering method of k-means was introduced to preprocess the inputs of the model, in order to improve the reasoning layer, and simplify the system output as well. Compared With the basic fuzzy and neural network, the improved fuzzy and neural network had high accuracy and needed less time, thus the method realized the real-time and precise forecast of aviation battery's residual capacity.
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15