Population coding of somatic sensations  被引量:4

Population coding of somatic sensations

在线阅读下载全文

作  者:Qiufu Ma 

机构地区:[1]Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115,USA

出  处:《Neuroscience Bulletin》2012年第2期91-99,共9页神经科学通报(英文版)

基  金:supported by NIH grants from NIDCR (R01DE018025);NINDS(R01NS047710), USA

摘  要:The somatic sensory system in^udes a variety of sensory modalities, such as touch, pain, itch, and temperature sensitivity. The coding of these modalities appears to be best explained by the population-coding theory, which is com- posed of the following features. First, an individual somatic sensory afferent is connected with a specific neural circuit or network (for simplicity, a sensory-labeled line), whose isolated activation is sufficient to generate one specific sensation under normal conditions. Second, labeled lines are interconnected through local excitatory and inhibitory interneurons. As a result, activation of one labeled line could modulate, or provide gate control of, another labeled line. Third, most sensory fibers are polymodal, such that a given stimulus placed onto the skin often activates two or multiple sensory-labeled lines; crosstalk among them is needed to generate one dominant sensation. Fourth and under pathological conditions, a disruption of the antagonistic interaction among labeled lines could open normally masked neuronal pathways, and allow a given sensory stimulus to evoke a new sensation, such as pain evoked by innocuous mechanical or thermal stimuli and itch evoked by painful stimuli. As a result of this, some sensory fibers operate along distinct labeled lines under normal versus pathological conditions. Thus, a better understanding of the neural network underlying labeled line crosstalk may provide new strategies to treat chronic pain and itch.The somatic sensory system in^udes a variety of sensory modalities, such as touch, pain, itch, and temperature sensitivity. The coding of these modalities appears to be best explained by the population-coding theory, which is com- posed of the following features. First, an individual somatic sensory afferent is connected with a specific neural circuit or network (for simplicity, a sensory-labeled line), whose isolated activation is sufficient to generate one specific sensation under normal conditions. Second, labeled lines are interconnected through local excitatory and inhibitory interneurons. As a result, activation of one labeled line could modulate, or provide gate control of, another labeled line. Third, most sensory fibers are polymodal, such that a given stimulus placed onto the skin often activates two or multiple sensory-labeled lines; crosstalk among them is needed to generate one dominant sensation. Fourth and under pathological conditions, a disruption of the antagonistic interaction among labeled lines could open normally masked neuronal pathways, and allow a given sensory stimulus to evoke a new sensation, such as pain evoked by innocuous mechanical or thermal stimuli and itch evoked by painful stimuli. As a result of this, some sensory fibers operate along distinct labeled lines under normal versus pathological conditions. Thus, a better understanding of the neural network underlying labeled line crosstalk may provide new strategies to treat chronic pain and itch.

关 键 词:developmental neurobiology dorsal root ganglion pain pathways ITCH spinal dorsal horn 

分 类 号:Q424[生物学—神经生物学] O157.4[生物学—生理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象