检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向珉江[1] 高厚磊[1] 安艳秋[1] 杜强 刘凯 苏将涛
机构地区:[1]山东大学电气工程学院,山东省济南市250061 [2]莱芜市供电公司,山东省莱芜市271100
出 处:《电力系统自动化》2012年第8期77-81,91,共6页Automation of Electric Power Systems
基 金:国家自然科学基金资助项目(51177094)~~
摘 要:研究了电子式互感器采样不同步时数字化智能电子设备(IED)的数据同步问题。在推导一阶Lagrange插值算法精确误差公式的基础上,计算了内、外2种插值方法的瞬时和相量误差,以及对继电保护和测量的影响。传统减小误差的算法只涉及采样率,而一阶Lagrange插值算法与采样率和采样偏移时间都相关。通过研究误差随采样偏移时间变化的规律,用最小二乘法以抛物线方程拟合复杂误差轨迹方程,在限定误差的前提下简化了分析。在此基础上,提出了一种自适应调整插值基准时刻的算法,经分析验证该算法可以有效降低误差。Abstract: Data synchronization of digital intelligent electronic device (IED) with non-synchronous sampling of electronic transformers is studied. Based on derivative precise error formula of first-order Lagrange interpolation algorithm, each instantaneous error and phasor error of inside and outside interpolation algorithms are calculated, and the impacts to relay protection and measurement are also analyzed. First-order Lagrange interpolation error is related to sampling rate and offset time. But conventional reduce errors method is increasing sampling rate only. Through study on error variation rule with offset factor, and with using parabola equation to fit complex error locus equation by least square method under the certain error, the analysis is simplified. An adaptive adjusting basic time of interpolation algorithm is put forward which can effectively reduce error proved by verification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229