检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙鹏[1] 程世庆[1] 谢敬思[1] 张海瑞[1]
机构地区:[1]山东大学能源与动力工程学院,山东济南250061
出 处:《山东大学学报(工学版)》2012年第2期108-111,123,共5页Journal of Shandong University(Engineering Science)
摘 要:为了更加快速、精确地对混合生物质灰熔点进行预测,利用交叉验证(cross validation,CV)方法进一步优化了前人提出的经遗传算法(genetic algorithm,GA)优化的支持向量机(support vector machine,SVM)回归模型。以灰成分作为输入量,灰熔点为输出量,以单生物质数据训练该模型,对混合生物质灰熔点进行了预测;并与仅经GA优化模型的预测结果进行了比较。研究结果表明:经GA与CV优化的SVM模型对混合生物质灰熔点进行预测,平均绝对误差为25.0℃,平均相对误差为2.7%,比仅经GA优化的SVM模型预测结果更为精确;适当地设置相关参数可以节省程序运行时间。In order to predict the ash fusion point of a mixed biomass more quickly and accurately, the support vector machine(SVM) regression model was optimized by a genetic algorithm( GA), built by other researchers was further optimized by cross validation(CV). The ash fusion point of a mixed biomass was predicted by the optimized model and was trained by the data of a single biomass while taking ash compositions as input and the ash fusion point as output. The result was compared with models optimized only by GA. The results showed that the SVM model optimized by GA and CV, with average absolute error 25. 0 ℃ and relative error 2. 7%, could predict the ash fusion point of a mixed binmass better than that optimized only by GA, and the running time could be saved if parameters were properly set.
分 类 号:TK6[动力工程及工程热物理—生物能]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46