检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙宇[1] 曾卫东[1] 赵永庆[2] 韩远飞[1] 马雄[1]
机构地区:[1]西北工业大学凝固技术国家重点实验室,陕西西安710072 [2]西北有色金属研究院,陕西西安710016
出 处:《稀有金属材料与工程》2012年第4期594-598,共5页Rare Metal Materials and Engineering
基 金:国家"973"计划(2007CB613807);新世纪优秀人才支持计划(NCET-07-0696);凝固技术国家重点实验室开放课题(35-TP-2009)
摘 要:在TC11钛合金大量实验数据的基础上,应用人工神经网络建立TC11钛合金的化学元素与力学性能关系模型。模型的输入参数包括Al、Mo、Zr、Si、Fe、C、O、N和H共9种化学元素;输出为常规力学性能指标(抗拉强度、屈服强度、延伸率和断面收缩率)。运用未知数据样本对已建立神经网络模型的预测能力进行检验,并以Al、Mo、Zr和C元素为研究对象,利用该模型分析TC11钛合金化学元素对力学性能的影响规律。结果表明:网络的预测值与实验值的相对误差均在10%以内,说明所建立的神经网络预测模型具有较精确的预测能力,而且能够清楚地反映出该合金化学元素与力学性能之间的非线性关系。Based on a large amount of experimental data,the relationship model of chemical elements and mechanical property for TC11 titanium alloy has been developed using artificial neural network.The input parameters of this model were 9 kinds of elements,including Al,Mo,Zr,Si,Fe,C,O,N and H.The mechanical properties were used as output parameters,including ultimate tensile strength,yield strength,elongation and reduction of area.The prediction capability of the established model was tested by the unseen data sample.Additionally,the effect of chemical elements(Al、Mo、Zr and C) on the mechanical property was studied using the present model.It is found that the relative errors between predicted and experimental values all within 10%,indicating that the neural network model possesses excellent prediction capability.With the help of the trained ANN model,the nonlinear relationship of chemical elements and mechanical property can also be clearly presented.
分 类 号:TG146.23[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70